
regression - Converting standardized betas back to original …
Where β∗ β ∗ are the estimators from the regression run on the standardized variables and β^ β ^ is the same estimator converted back to the original scale, Sy S y is the sample standard …
regression - Trying to understand the fitted vs residual plot?
Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …
Explain the difference between multiple regression and …
There ain’t no difference between multiple regression and multivariate regression in that, they both constitute a system with 2 or more independent variables and 1 or more dependent …
regression - What does it mean to regress a variable against …
Dec 4, 2014 · When we say, to regress Y Y against X X, do we mean that X X is the independent variable and Y the dependent variable? i.e. Y = aX + b Y = a X + b.
regression - Linear vs Nonlinear Machine Learning Algorithms
Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …
Sample size for logistic regression? - Cross Validated
Sample size calculation for logistic regression is a complex problem, but based on the work of Peduzzi et al. (1996) the following guideline for a minimum number of cases to include in your …
What happens when we introduce more variables to a linear …
Feb 22, 2020 · Adjusted R-squared value can be calculated based on the value of r-squared, the number of independent variables (predictors), total sample size. What happens when we …
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
Support Vector Regression vs. Linear Regression - Cross Validated
Dec 5, 2023 · Linear regression can use the same kernels used in SVR, and SVR can also use the linear kernel. Given only the coefficients from such models, it would be impossible to …
regression - When is R squared negative? - Cross Validated
With linear regression with no constraints, R2 R 2 must be positive (or zero) and equals the square of the correlation coefficient, r r. A negative R2 R 2 is only possible with linear …